Vertex Turán problems in the hypercube

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vertex Turán problems in the hypercube

Let Qn be the n-dimensional hypercube: the graph with vertex set {0, 1} and edges between vertices that differ in exactly one coordinate. For 1 ≤ d ≤ n and F ⊆ {0, 1} we say that S ⊆ {0, 1} is F -free if every embedding i : {0, 1} → {0, 1} satisfies i(F ) 6⊆ S. We consider the question of how large S ⊆ {0, 1} can be if it is F -free. In particular we generalise the main prior result in this are...

متن کامل

Some Turán type results on the hypercube

For any graphsH,G, define ex(H,G) (ex0(H,G)) to be the maximum number of edges (vertices) which may be contained in a subgraph (induced subgraph) H ′ of H without H ′ containing G as a subgraph. The study of these quantities for various choices of H and G are known as Turán type problems. We are interested in the quantities ex(Qn, G) and ex (Qn, G), where Qn denotes the n-dimensional hypercube....

متن کامل

Rainbow Turán Problems

For a fixed graph H, we define the rainbow Turán number ex∗(n,H) to be the maximum number of edges in a graph on n vertices that has a proper edge-colouring with no rainbow H. Recall that the (ordinary) Turán number ex(n,H) is the maximum number of edges in a graph on n vertices that does not contain a copy of H. For any non-bipartite H we show that ex∗(n,H) = (1+o(1))ex(n,H), and if H is colou...

متن کامل

Supersaturation For Ramsey-Turán Problems

For an l-graph G, the Turán number ex(n,G) is the maximum number of edges in an n-vertex l-graph H containing no copy of G. The limit π(G) = limn→∞ ex (n,G)/ ( n l ) is known to exist [8]. The Ramsey-Turán density ρ(G) is defined similarly to π(G) except that we restrict to only those H with independence number o(n). A result of Erdős and Sós [3] states that π(G) = ρ(G) as long as for every edg...

متن کامل

Turán Problems for Bipartite Graphs ∗

We consider an infinite version of the bipartite Turán problem. Let G be an infinite graph with V (G) = N, and let Gn be the n-vertex subgraph of G induced by the vertices {1, 2, . . . , n}. We show that if G is K2,t+1-free, then for infinitely many n, e(Gn) ≤ 0.471 √ tn3/2. Using the K2,t+1-free graphs constructed by Füredi, we construct an infinite K2,t+1-free graph with e(Gn) ≥ 0.23 √ tn3/2 ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 2010

ISSN: 0097-3165

DOI: 10.1016/j.jcta.2009.07.004